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Abstract—Using a one-dimensional model for uniformly distributed granular solids, it is shown that the
discontinuity in the porosity must be second order across a shock wave. This result implies that the
Hugoniot properties of shock waves and their growth and decay behavior are qualitatively similar to those
for homogeneous nonlinear elastic solids, but arc quantitatively influenced by the initial porosity.

1. INTRODUCTION

In this study we continue our investigation of wave propagation in granular materialst and
examine the behavior of one-dimensional shock waves in a granular material with an initially
uniform distribution of granules. The basis for the continuum theory employed is the concept of
a distributed body proposed by Goodman and Cowin[2] for flows of granular materials in which
the porous nature of the material is represented in terms of the volume fraction of the granules.
Here we consider an adaptation of this model appropriate for porous solids, pressed powders,
and granular materials subject to sufficiently high confining pressure where the skeletal material
is elastic.

In Section 2 we review the kinematics and field equations appropriate for this class of
granular materials. We then state the constitutive assumption and note the restrictions imposed
by thermodynamic considerations. In Section 3 the general properties of shock waves are
considered including a discussion of the Hugoniot functions consistent with the concept of a
distributed body. In particular we show that the discontinuity of the volume fraction at the
shock must be second-order. As a result, the Hugoniot properties of shock waves in granular
materials are similar to those for homogeneous nonlinear elastic solids. Finally, we consider the
growth and decay of shock waves in Section 4 and show that the amplitude behavior is also
similar to that of shock waves moving in elastic nonconductors. It is important to realize,
however, that the material response functions depend on the initial porosity of the solid and this
will affect the wave behavior indirectly. We also note that the elastic-type of behavior of the
shock front appears to be consistent with experimental observations on porous
polyurethane 3], porous aluminum[4], and on dry sand with sufficient confinement[5, 6].

2. CONSTITUTIVE ASSUMPTION AND FIELD EQUATIONS

Here we consider the one-dimensional response of a granular material with voids. We assign
the material the structure of a distributed body[2] and, thus, represent the material as a
continuum. The motion of the material can be described by the single field

x=x(X,t)

giving the spatial position x at time ¢ of the particle which occupied the position X in the
reference configuration. For sufficiently smooth motions the particle velocity v and the total
strain € are defined by

v s‘x'=Xf(X9 t)v €= l—XX(Xy t)- (2-1)
+The growth and decay of one-dimensional acceleration waves is considered in [1].
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It should be noted that in writing (2.1), we have followed the common practice in shock wave
physics and taken the strain (X, ¢) to be positive in compression. To be consistent with this,

we shall also take the stress o( X, ¢) positive in compression.
An important consequence of the notion of a distributed body is that the bulk density p at
any point X and time ¢ can be written as a product of the fields » and y:

p=vy 2.2

where vy = y(X, t) is the density of the granules and v = v(X, t), 0 < v 5 |, is the volume fraction
of the granules.t The field »(X, t) accounts for changes in the void volume such as compaction
or distention. By the balance of mass and (2.2), the total strain is related to » and y by

[ L3 ( (2.3)
p vy

where ( )y indicates evalnation in the reference configuration. It is important to note from (2.3)
that both the total steain « and the volume fraction » must be specified in ordar to calculate the
density of the granules y. Thus, cmdvarehnemmeallymdependentvambksmdttnsfact
will necessitate the introduction of an additional force balance equation governing the void
collapse. This equation involves a higher-order stress A and a body force g which must be
specified as part of our constitutive assumption (see Goodman and Cowin{2]).

Throngheut this study, we consider granular materials which do not conduct heat and
assume that their response can be characterized by constitutive equations for the internal
enargy ¢, the siress o, the absolute temperature 6, the equilibrated stress h, and the intrinsic
equilibrated body force gt:

e=é(v, v, vx, ¥, € 1),
o =Gy, v, ¥x, ¥, € 7),
0 = 6(vo, v, ¥x, ¥, &, 1), 2.4)
k= h(vo, v, vx, 9, € ),
8 =4, v, ¥x, v, € 1),
where », is the reference. value of the volume fraction, » is the present value of the volume
fraction, »x is the volume fraction gradieat, » is the volume fraction rate, ¢ is the strain and 7

is the entropy. We further suppose that the response functions & &, 4, and § are even functions
of the gradient »y, i.c.}

AC, v, )= AC, — V0,0, 0), A=¢0,0,3, [vX)
and that the response function K is an odd function of vy, i.e.
RCyos s ) ==RE, =y ). (2.6)
The condition (2.6) implies that the equilibrated stress i has the representation
h =2a&(vo, v, vx, ¥, € 7)vx .7
where a is an even function o_f vx and is assumed to be strictly positive:

a>0. 2.8

1The porosity »# of the material is reisted to the volume fraction » by the formula, # =1-».

1These constitutive equations are slightly more genieral than those used in [1] to study acceleration waves in that we include
here a dependence on ».

§These conditions, in a three-dimensional context, imply that the material has a center of symmetry.
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Hereafter the response function é is assumed to be of class C* and the fields x, », and % are
assumed to be as smooth as the context requires.

An admissible thermodynamic process in a granular material is defined as any ordered array
{x. »,n. ¢, 0,0,h,g k} which satisfies

pb=—ox+b, 2.9)
poki=hy+g+1, k=0, (2.10)
é=oé+hix—gi+r, @.11)
M=z, (2.12)

where b and r represent the extrinsic body force and heat supply, ! is the extrinsic equilibrated
body force, and k = k(X)>0 is the equilibrated inertia. It is well known that the entropy
inequality (2.12) can only hold for every thermodynamic process if the response functions (2.4)
satisfy certain restrictions. These restrictions are outlined in

Theorem 1. Every thermodynamic process in a granular material is an admissible process if
and only if

G) & 6, 6 and h are independent of »,

(i) o=é, (2.13)
0=2¢é, (2.149)
h=é,, (2.15)

and
(iii) (g+é)=s0. 2.16)

The proof of these results is fairly standard and will be omitted here (see Refs. [2] and {1]).
Equations (2.13) and (2.14) are the usual stress and temperature relations which arise in studies
of homogeneous materials, while (2.15) and (2.16) show the thermodynamic restrictions on how
the internal energy ¢ must depend on the volume fraction » and its gradient »y.

In view of the smoothness of the internal energy function é and Theorem 1, we can define
several important material properties. In particular, the tangent modulus E, the second-order
modulus E and the stress-entropy modulus G are given by

E=6, E=6. G=é, .17

and we assume that for all (3, », ¥x, €, 1)

E>0, E#0, G»0. (2.18)
Furthermore, we require that
E>2%. (2.19)

There has been considerable discussion as to the physical interpretation of the equilibrated
balance equation (2.10) and the quantities k, h, and g.t Clearly, this equation determines the
compaction or distention of the voids and comparison with the recent work of Carroll and
Holt[7) on porous materials suggests that k is related to the initial surface area of the voids. It
is also evident from (2.10) that the body force g provides the coupling between the total
deformation of the material and the compaction or distention of the void volume.} This force,
then, would be associated with the actual forces acting in the skeletal material. In the case of
granular media, these would be the Hertzian-type of contact forces acting on the granules. The
fact that g depends on » merely accounts for the frictional effects associated with these forces.

tin this regard, see Goodman and Cowin{2], and Passman(7].
$The fact that this coupling must be defined in terms of a constitutive equation was first suggested by Herrmann{9].
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However, if the void distribution is non-uniform, the granules are non-spherical, or the granules
are of different sizes, thare will be other contact forces acting on the surface of the granules
which will tend to change the packing or the fabric of the material. Similar forces occur in
porous materials which result in rupture of the cell structure. We associate the stress h with
these forces and it is clear that it is this quantity which controls the dilatancy of the material.
This interpretation of the equilibrated stress k is supported by the recent work of Cowin and
Nunziato[10] who showed that the parameter a determines the speed of a wave of dilatancy in
materials with incompressible granules (see also Nunziato and Walsh[1]). It is for this reason
that we call o the modulus of dilatancy.t Then, the inequality (2.19) merely states the physical
assumption that the sound speed associated with the compressibility of the granular material is
greater than the speed of a wave of dilatancy associated with changes in the void velume.

3. GENERAL PROPERTIES OF SHOCK WAVES
The motion x(X, t) is said to contain a shock wave if the function y and the volume fraction
v are continwous for all X and ¢, while, v, ¢, vy, 7 and their derivatives are continuous for all X
and ¢ except at points represented by the smooth one-parameter family Y(¢) where they may
suffer jump discontinuities. The function Y(¢) gives the location in the refereace configuration
at which the wave is to be found at time ¢ and hence, represents the material trajectory of the
wave. The wave propagates with the intrinsic velocity

dY(t)>

U=U@m==7

0. 3.1
We denote the jump discontinuity in a function f(X, t) by
N=r-f, fF=_Ilim f(X0),
XY
and, if f and fx are also discoatinuous at the wave, then
d
GU1=U1+ Ulfx) 3.2)

With U >0, f* and f~ are the limiting values of f(X, t) immediately ahead of and behind the
wave. We note that at a shock wave the functions é. 6, 4, §and A may also be discontinuous.

Assuming that all external forces and supplies are absent, the balance reiations (2.9)~(2.11)
imply that across a shock{1]

poUv] = [0] (3.3)
poUlkv] = —[h] (3.9
Uikl =0, (3.5)
U[e+ 801+ 82| = (001 i) ()
[n]=0, 3.7
and
polt] = —[ox], (3.8)
polk?] = [hx]+ (8], (3.9
(k1=0, (.10
[Mnl=-l(g+ &)%) 3.1

tlna recent study of the flows of granular materials, Cowin{11] introduced a quantity { which he called the dilatency
m‘:;“‘" This modulus is related to our modelus of dilstsncy a by { = ay. ag being the value of a in the reference configuration.
configuration.
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Since x and » are continuous, (2.1) and (3.2) assert that the kinematical relations

[v]= Ulel, [#)=~Ulwx] (3.12)

hold at the wave. Combining these expressions with (3.3)~(3.6) we obtain the relations

2 _lo)
poU Tik (3.13)
=kl
[h1= k{5 Iox) (.14
[el= %(o" +o")e)+ %(h' + 1 )wx), (.15

where the equilibrated inertia k is continuous. These resuits are to be looked upon as Hugoniot
relations in that by using the appropriate constitutive equations (2.4),, and (2.7), we can
determine the velocity U and the jumps in volume fraction gradient »x and entropy # in terms
of the jump in strain . Clearly, [e] is a measure of the wave amplitude.

Throughout this study, we will confine our attention to the propagation of a shock wave into
material which is in its reference configuration and is undeformed and stress-free. Then

€ =0, n°=my, w' =0, v =y,
and
e =&uv,vo,¥x,€,07), e =e,
o”=d(vo, Vo, vx . €,7°), =0, (3.16)
h™ =2d(vo, vo, vx™, €, 0 )ux", h*=0.

If we now define the Hugoniot functions

H(e, n, vx) = é(o, vo, vx, € 1)~ Co"%&(!‘o, Vo, ¥x: € M€ —G(¥o, Vo, Vx, € NIVX, 3.17)
Jenvx)= {Zé(vo, vo, ¥x, €, n)—k W}Vx, (3.18)

then, by (3.14)-(3.16), the intersection of the surfaces

H(e,n ", v) =0, (3.19)
e, n, ) =0, (3.20)

represent all states (¢”, #n~, »x") attainable in a shock jump from the initial state (0, 0o, 0). It
should be noted that by virtue of the smoothness of the response function & the Hugoniot
functions H(e, n, »x) and J(e, n, vx) are single-valued, continuous, and differentiable functions
of thieir arguments. We are now in a position to prove our main result.

Theorem 2. Consider a shock wave propagating into an uniformly distributed granular
material in its reference configuration. Then if (2.19) holds, the discontinuity in the volume
fraction v is at least second-order; that is

[l’x] =pyy = 0. (3.21)

Proof. In view of the smoothness of the functions He, . vx) and J(e, n, ¥x), it is clear from
(3.18) and (3.20) that it suffices to show that

€™, ™, i) = 28(o, Voo ¥x"s €, 7) = k‘—’ﬂ’-l"-"’—’ei’fiﬁm %0 (G.2)
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for any state (e¢”,n,»x). Therefore, let us consider the behavigr of the shock in the
neighborhood of the initial state (0, 7, 0). Since both the surfaces H(-,-,") and f(:,-, ") pass
through this state, the implicit function theorem implies the existence of the functions

7~ =Nu(€7), vx =Myu(€) (3.23)
Wo"ided at (09 Nos 0)9
IHj:lf{'x #0, (3.29)

That this latter condition does hold is evident from the fact that (3.17), (3.18), (2.14) and (2.20)
yield

AAH,,
X

at (0, 9o, 0). Furthermore, we note that the functions Ny (-) and My(-) have bounded derivatives.
tives.
Now, by virtue of (3.16), (3.23), (2.13), (2.15), (2.7) and (2.17),

= 8o(2a0~ kEg) <0

(n]=Ni0)e +---, (3.25)
o~ = Eye +Goln]+-- -,
={Eo+ GoN i{0)}e™ +: - -. (3.26)

By differentiating (3.19), we also have

20Ni{€)=~0 +{E"+ G N{€)+(d,, ) Mide )}e”
+2{(de)” vx + (@) Nide )y
+ ((&yx Yux + 2a‘)Mh(e“)} vx 3.27)

and, thus, as € =0, n” = 7, vx =0, (3.26) and (3.27) assert that
Ni{0)=0. (3.28)
Using (3.22), (3.26), (3.28) and (2.19), it is clear then that
I(0, no, 0) =2a9— kEy <0
and hence the proof is complete.
The continuity of vy across a shock of arbitrary amplitude is an extremely important resuit;
for it implies that (3.20) is trivially satisfied and (3.19) reduces to the familiar Hogoniot relation
(e, n") = é(v, 10,0,€, 1)~ €
~ 360, 10,0, €7, e (3.29)
Since G# 0, (2.18); further implies the existence of the inverse function
n =6"(v, », vx, € 0). (3.30)
and thus we can define the Hugoniot stress-strain curve:

H(e,o7)=H(e",6 (v, v.0,€",07) =0. 3.3
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Clearly, from (3.13) the shock velocity U is related to the secant (Rayleigh line) connecting the
initial state (0, 0) and the final state (¢”, &) on the Hugoniot curve. Nunziato and Herrmann[12]
have studied the general properties of the Hugoniot curve defined by (3.31) and have proved the
contents of

Theorem 3. Consider a shock wave propagating into undeformed material at rest which is
also stress-free and suppose that (2.8), (2.18), and (2.19) hold. Then

() if E> 0 for all €, the shock is compressive, i.e.

€ >0
on the other hand, if E <0 for all €, the shock is expansive, i.e.
€ <0;

(ii) the shock velocity and the entropy increase monotonically as the Hugoniot stress-strain
curve is traversed outward from the origin (0,0); and

(iii) the shock velocity is supersonic with respect to the material ahead of the wave and
subsonic with respect to the material behind the wave, i.e.

E<pU*<E".

Having established these results, we can now consider the growth and decay of shocks of
arbitrary amplitude ¢”.

4. THE GROWTH AND DECAY OF SHOCK WAVES

In this section we derive a differential equation which governs the amplitude of the shock
wave propagating in a uniformly distributed granular material. The derivation of this equation is
fairly standard (see for example, Chen and Gurtin[13] and so will only be outlined here.
Throughout the analysis it will be assumed that the material ahead of the wave is in its
reference configuration which corresponds to a state of zero strain, zero stress and constant
entropy.

Using (3.2) with f =€ and v and combining this with (3.8), the following relation for the
amplitude €~ of the shock is obtained:

de- _dU E G- (Guy)”
20+ € g = (U2 - el —tmd = 2] @)

where we have used (2.18). At this point we note that, by (2.7) and the thermodynamic results
(2.13) and (2.15),

(6,,) = (h)™ =2&,) (vx)".

However, in view of Theorem 2, the volume fraction gradient »x must be continuous across the
shock and thus it follows that (d,,)” = 0 for a wave entering undeformed material. In this case
(4.1) reduces to the form given by Chen and Gurtin (eqn (3.16) of [13]) for a shock entering an
elastic nonconductor. The subsequent amplitude relation is obtairied from (4.1) by evaluating
dUjdt and [nx]. In particular, using (3.11), (3.2) with f = n and ¢, (3.15), (3.16) and Theorem 2, it
can be shown that

_1din)_ E-1) de
=54 “Ga-200 ar “2)
and

AU _ UG-y de”

&~ pe (=27 ar’ @3)
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where

= el
T G p=" 4.4)

Substituting (4.2)~(4.4) into (4.1) gives the amplitude equation

de ___UQ-p)er-
dar - " Bu+1)-0a

— l)l X] (4'5)1.

As expected, the amplitude behavior is determined by the strain gradient behind the wave;
what is somewhat surprising is that the amplitude does not depend explicitly on the granularity
and thus the behavior of the shock front is qualitatively the same as it would be in a
homogeneous elastic material. Of course, there is an influence on the amplitude due to the
initisl pososity as it affects the material response functions E and G, and the shock velocity U.

To illustrate the growth and decay behavior of the wave, as predicted by (4.5), we note from
result (iii) of Theorem 3 that

r2
waBcy (46)

Further, we assume, as is true for most materials, that G™>0 and that the Hugoaiot relation
(3.31) is single-valued. Then, by (4.2), (2.18) and (ii) of Theorem 3, it follows that for
compressive shocks {12]

r >%. @7

Equations (4.5)-(4.7) combine to yield

Theorem 4. Consider a compressive shock wave propagating into an undeformed granuiar
material at rest which is also stress-free. Then, if G~ > 0 and (2.19) holds
(@

de”
fex]> OQ-aT<0,

(ii) de”
lex]<0& dt >0.

[cx]'aoa d‘ 0.

Figure 1 is a schematic of the situation described in Theorem 4. Note in particular that,

o

shock front shock front shock front
will grow is steady wilt decay

Fig. 1. Shock wave profiles «(X) in a uniformly distributed granular materisl with £->0, G" >0 at a
specific time 1. The wave is propagating into unstrained material at rest and the slope immediately behind
the shock jump is {ex].

tChen and Gurtin{13], eqn (3.16).
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although the shock front propagates as an elastic wave, we expect the influence of the porosity
to be feit behind the front in a manner shown qualitatively in Fig. 1. In a recent numerical
study, Nunziato and Yarrington[13] used the present theory to model porous materials to show
this type of two-wave structure and compared the results with experimental observations on
polyurethane foam[3]. Similar wave structures have also been observed in porous aluminum [4]
and in dry sand under certain conditions[5, 6].t These observations appear to be consistent with
the result that the discontinuity in the volume fraction, resulting from the pore collapse initiated by
the shock wave, must be second-order. We can calculate this discontinuity from (3.9), using (3.24),
(3.12) and (2.7),

o U?
U1~ k=3 ¢!

This result further emphasizes the role of the intrinsic equilibrated body force g in the pore
collapse process associated with a propagating compressive wave.

Finally, we wish to note that in the case of weak shock waves all the results obtained for
elastic non-conductors apply to the present theory. That is, for small amplitudes €, the shock

velocity U is given by
oo (B

the entropy jump [n] is third-order in the amplitude ¢,

(n}=135: B ey roem

and the shock amplitude €~ is constant. These results are conslstent with the exact solution to
the impact problem obtained by Nunziato and Walsh[15] in the context of the linearized theory of
granular materials.
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