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AIIIInd-UaiDa a oDe-4imensional model for Ulliformly diltributcel Il'IIlU1ar solids. it is abowD that the
diICOlIIiauity ill .... poroIity must be IIICOIId order ICI'OII a sbock· wave. This muIt tbat dlc
Hupaio( properties of Ibock waves IDd their II'OWIh ucI decay .-avior are~ to those
for IIomoplleOUlllOtllillear eIutic: solids. but an quaatitatively iduenc:ed by the iDItiaI porosity.

I. INTRODUCTION

In this study we. continue our investiption of wave propaption in Jl'lDuiar materialst and
examine the behavior of one-dimensional shock waves in a Jl'UUIat material with an initially
uniform distribution of pnules. The basis for the continuum theory employed is the concept of
a distributed body proposed by Goodman and Cowin(2] for ftows of ....... materials in which
tbe porous nature of the material is represented in terms of the volume fraction of the granules.
Here we consider an adaptation of this model appropriate for porous solids, pressed powders,
and granular materials subject to sufficiently high confining pressure where the skeletal material
is elastic.

In Section 2 we review the kinematics and field equations appropriate for tbis class of
granular materials. We then state the constitutive assumption and note tbe restrictions imposed
by thermodynamic considerations. In Section 3 the aeneral properties of shock waves are
considered including a discussion of the HlJIOniot functions consistent with the concept of a
distributed body. In particular we show that the discontinuity of the volume fraction at the
shock must be second-order. As a result, the Huaoniot properties of shock waves in Jl'lDuiar
materials are similar to those for homogeneous nonlinear elastic solids. Finaly, we consider the
growth and decay of shock waves in Section 4 and show that the amplitude behavior is also
similar to that of shock waves moving in elastic nonconductors. It is important to realize,
however. that the material response functions depend on the initial porosity of the solid and this
will affect the wave behavior indirectly. We also note that the elastic-type of behavior of the
shock front appears to be consistent with experimental observations on porous
polyurethane [3]. porous aluminum [4], and on dry sand with sufticient confinement[S, 6].

2. CONSTITUTIVE ASSUMPTION AND FIELD EQUATIONS

Here we consider the one-dimensional response of a JI'IIluiar material with voids. We assign
the material the structure of a distributed body[2) and, thus, represent the material as a
continuum. The motion of the material can be described by the sinaJe field

x =X(X. t)

giving the spatial position x at time t of the particle which occupied the position X in the
reference configuration. For sufficiently smooth motions the particle velocity II and the total
strain ~ are defined by

II =·i =X,(X, t). ~ =1- Xx(X, t).

tThe lI'owth and decay of one-dimensiollal aec:eIera&ion waves is c:oasiderecl ia (1~
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(2.1)
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It sbould be noted that in writiq (2.th we bave foUowed the common practice in shock wave
physics and taken the SU'ain E(X, f) to be positive in compression. To be consistent with this,
we sball also taU the .ftSJ a(X, t) poeidve in COIftPnUion.

An important COB......'. of_ aodoaof a~ body is that the bulk density p at
any point X and time f can be written as a product of the. fields 1I and 1:

p=vy (2.2)

where 1. ')'(X, t) is tile -..u, of tIN ,rtIINIlaand 1I. lI(X, f), 0< 11 so 1, is the vol""., jrGctio,.
of ,IN ".,.",..t The tleld I'(~ t) KCOUIIU for c..... in the void volume such as compaction
or disteDtion. By" the bIIa8ce of mall .... (2.2). die to&aI strain is related to 11 and 1 by

eI.!!l'!.t-.
p vy

(2.3)

where (It ..,.,.t ill refernce COl "7nUon. his~to... fn»m (2.3)
that both tbe ' ~.tra.:CiOD 11 .... be ...._••·to.-r.e the
deuity of die 'Y. Thus, E and 11 are kinematicaDy independent variables and this fact
~ necealitate the iDtroduction of an additiouaJ force baJance equation IOvemiaa the void
coIIIpH. This equation involves a~ s_s " and a body force g which must be.... ·1., ".of our'~",,'''''''ll (see 00Qd " aDd Cowit:a(2).

nre ,...." .,.. C'4'Ilider wbicll._.~ ~.and

..... _.dI!eir~.etabe~.by ~e .......... * _~
0IiIrIY " teIBpIratUre I, the" equilibn&ed ..'l ud the iatrlasic
e_I..• 'Wy fOrce ,*:

, - I( JIo, 11, "x, ii, .. 17),

IT =6(110. 1I, lIx, ii, E, 17),

I • i(JIo, 11, "x, ii, .. 17),

" - Ji(JIo, 11, lIx, iI, .. 17),

g = i(110. 11, "x, ii, E, 17),

(2.4)

wbele .". is _ re«...,value of the vokuDJ fraction, ." is tbe ..pI'UOQt va&Qe of the volume
fraction,."¥.is dI\I.v.- ;, is the volume fnctioD....... is the ...... and 17
is tbo. eD&rQJY, W...... 1tIPI'fOI' the response fllQetiolls I, 6, I, and; are even functions
of die andirmt "x, &••1

A(·. " "'x, ., " .) • A(·, ., - "'x, " .•.), A = E, cr, I, g,

and that the response function Ji is an odd function of "x, i.e.

Ji(·,i, "x,"·,·) =- Ji(.,., - "x,', ., .).

The condition (2.6) iBapJies that the equilibrated stress ,. bas the representation

where .. is ID evell fUDCtioIl of "'x and is assumed to be stricdy positive:

a>O.

(2.5)

(2.6)

(2.7)

(2.8)

tTIIe poroIity /I of die IIIIIIriII is~ to die volullle fnM:tioa " by die fonDuIa, /I ··1 - II.m-.CCiBIdaId.........II'I.....,........diu dlDleUllll ill (I) to study KCeIeratioIl_ves ill that we include
IIIlI'e • cIepeadnce Oft P.

t1'bele cOadiIiona. in • tIne-dilllelllioaal COIIU!xt, imply tbal die III.-iaI bas a c:elltIr of symmetry.
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Hereafter the response function I is assumed to be of class C3 and the fields x, If, and 'I are
assumed to be as smooth as the context requires.

An admissible thermodynamic process in a IJ'&ftU1ar material is deftnecl as any ordered amy
{X, If, 'I, e, (T, I, It, I, k} which satisfies

PoV =-(Tx +b,

Pokii = hx + I + I, k =0,

e=uf +h;,x - gil +"

9t7 ~',

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(T= I ..

where band' represent the extrinsic body force and heat supply, I is the extrinsic equilibrated
body force, and k =k(X) > 0 is the equilibrated inertia. It is weD known that the entropy
inequality (2.12) can only hold for every thermodynamic process if the response functions (2.4)
satisfy certain restrictions. These restrictions are outlinecl in

Tit.,,.,. 1. 8Hry tltermodYlltlmic procell in a ITtUII.' material is an admi"iblt process if
and only if

(i) I, 6, i and Ii art independent of ii,
(ii)

and

(iii) (g + I,,);' $0. (2.16)

The proof of these results is fairly standard and will be omitted here (see Refs. [2] and (1».
Equations (2.13) and (2.14) are the usual stress and temperature relations which arise in studies
of homoaeneous materials, while (2.15) and (2.16) show the thermodynamic restrictions on how
the internal energy e must depend on the volume fraction If and its II'Idient Jfx.

In view of the smoothness of the internal energy function I and Theorem 1, we can define
several important material properties. In particular, the tlUlltnt modullu E, the second-order
mod.,.s £ and the stms-tntropy motllll.s G are given by

8=6.. E=6.. G-6." (2.17)

and we assume that for all (Iflit If, "x, E, 'I)

E>O, E~O, Gf!O. (2.18)

Furthermore, we require that

(2.19)

There has been considerable discussion as to the physical interpretation of the equilibrated
balance equation (2.10) and the quantities k, It, and I.t Clearly, this equation determines the
compaction or distention of the voids and comparison with the recent work of CarroD and
HoIt[7] on porous materials sngests that k is related to the initiII surface area of the voids. It
is also evident from (2.10) that the body force I provides the coupIina between the total
deformation of the material and the compaction or distention of the void volume.* This force,
then, would be associated with the actual forces actina in the skeletal material. In the case of
granular media, these would be the Hertzian-type of contlct forces actina on the puules. The
fact that I depends on ;, merely accounts for the frictional efects associated with these forces.

tin aD 1'tIinL ..GoodlIID IIId CowiD(2), IIId PuuIaD(7J.
fl"IIe flld daat ... caaplilllIIUI1 be ...... ia tIrIIIs of • c:onstilldive ....... WISh ........ by 8errmaIut{9).
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However, if the void distribution is non-uniform, the JI'UU1es are non·~al, or the ll'Uules
are of dilQIlt sizes,~ will be odler cootact forces ~tinl on the surface of the JI1tAules
which will tend to chaDae the packing or the fabric of the JDIlerial. Similar forces occur in
porous materials which result in rupture of the cell structure. We associate the stress h with
these forces and it is clear that it is this quantity which controls the dilatancy of the material.
This interpretation of the equilibrated stress h is supported by the recent work of Cowin and
Nunziato[lO] who showed that the parameter a determines the speed of a wave of dilatancy in
materials with incompressible aranules (see also Nunziato and Walsh[l]). It is for this reason
that we call a the modJllru of dil4tlUlcy. t Then, the inequality (2.19) merely states the physical
assumption that the sound speed associated with the compressibility of the granular material is
JI'OI*tIwl tile speed of a wave of diJatuc::y associated with cbanaes in the void volume.

3. GENERAL PROPERTIES OF SHOCK WAVES

The motion X(X, t) is said to contain a slwck WCI" if the function X and the volume fraotion
" are contiDuous for all X and I, while, 11, eo J'x• ." and their derivatives ate coatiDuous for all X
and t except at points represented by the smooth one-parameter family Y(t) where they may
softer jump discontinuities. The function Y(t) gives the location 'in the reference collfiluration
at which the wave is to be found at time t and bence, represents the material trajectory of the
wave. The wave propaptes with the intrinsic velocity

(3.1)

We denote the jump discontinuity in a function f(X, I) by

[f)=r-r, r= lim f(X.I).
X-Y*(11

and, if I and Ix are also discoAlinuous at the wave, then

d
dt [f) =rJl + U[fx]. (3.2)

With U > 0, r and r are the limidna values of f(X. I) immediately ahead of and behind the
wave. We note that at a shock wave the functions e. u. i, i and Ii may also be discontinuous.

Assumina that all external forces and supplies are absent. the balance relations (2.9H2.11)
imply that across a shoek(l]

and

PoU[,,] =[0']

PoU[kai] = - [hI

U[k] =O.

u[ t +~V2+~bi2] = [0'lI] - [hail

h,]~O,

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

Palll] =-[ux], (3.8)

Palki) =[hx ]+ [g]. (3.9)

[k)=O, (3.10)

[for;) = - [(, + e~)v). (3.11)

tin a receatstudy of tile llows .f araouW lIIalCriais. Cowinlll1 introduced a "'*'tity , wllich he called the dihatfl/tcy
m~. TbiIaIiddIIus il reIIted to olltlflodWlus ofdilatancy a by , .. aOo ao bein, the value ofa in the reference confiIuralion.
confil\lf8'lion.
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Since X and I' are continuous. (2.1) and (3.2) assert that the kinematical relations

[v] = U[I]. [~] =- U[I'x]

hold at the wave. Combining these npressions with (3.3)-(3.6) we obtain the relations

PoU2 =[(1']
[f)'

[(1')
[h) = k [.) [I'x],

[e) = ~«(1'- + (1'+)[.) +~(h-+ h+XIIX],

(3.12)

(3.13)

(3.14)

(3.ts)

where the equilibrated inertia k is continuous. These results are to be looked upon as Huaoniot
relations in that by usilll the appropriate constitutive equations (2.4}.,2 and (2.7). we can
determine the velocity U and the jumps in volume fraction aradient IIX and entropy " in terms
of the jump in strain .. Clearly. [.] is a measure of the wave amplitude.

TbroUJbout this study. we will confine our attention to the propapdon of a sbock wave into
material which is in its reference confiluration and is undeformed and stress-free. Then

and

e- =1(1'0' 1'0. I'x-. '-.1J-).

(1'- = 6(1'0,1'0, "x-.•-, 1J-), (3.16)

If we now define the Hagoniot functions

then, by (3.14)-(3.16). the intersection of the surfaces

H('-.1J-. "x-) =o.
}(.-, 1J-, "x-) =0,

(3.17)

(3.18)

(3.19)

(3.20)

represent aU states (.-. 1J-, "x-) attainable in a shock jump from tile initial state (0."., 0). It
should be notedtbat by virtue of the smoothness of the respoDII fuDctioD I, tile Huaoniot
functions H(., 1J. "x) and }(•• 1J. "x) are single-valued. continuous. and difterentiable functions
of tlleir arpments. We are now in a position to prove our main result.

Theonm 2. Con,Uler a shock wave propaglJling mto GIl uilo",./y diltribllt. granlllGr
mGtmal in its njernce cOnNlU'lJlion. Then if (2.19) holds. the discontinuity mthe volume
fraction " ;s at I.,t second-order; that ;s

(3.21)

Proof. In view of the smoothness of the functions H(.,,,. "x) and 1('.1J. "x), it is clear from
(3.18) and (3.20) that it suffices to show that

(3.22)



686 J. W. NUNZIATO and E. K. WALSH

for any state (.-, ,,-, vx-). Therefore, let us consider the behavior of the shock in the
neiabborhood of the initial state (0, "0.0). Since boU. the surfaces H(',',') and 1(.",.) pass
tbrouIb this state, the implicit function theorem implies the existence of the functions

provided at (0, "0,0),

11i:I~0.

(3.23)

(3.24)

Tbal this latter condition does hold is evicknt from the fact that (3.17), (3.18), (2.14) and (2.20)
yield

at (0, 1fot 0). Furthermore, We note that the fUnctions NH(·) and !tH(·) have bounded derivatives.
rives.

Now, by virtue of (3.16), (3.23), (2.13), (2.1S), (2.7) and (2.17),

[,,] =N H(O).- + .. "

0'- = Eo.- + Gol,,] + .. "
={Eo + GoNH(O)}.- + ....

By dilerentiating (3.19), we also have

28NH(.-) =-0'- +{E- +G-NH(.-)+(u",,)-M~.-)}E

+ 2{(a.r vx- + (ci,,)-NH(.-)vx-

+«ci.x)-Jlx- + 2a-)MH(.-)}vx-

and, thus, as .- .... 0, "-""110, Jlx-""O, (3.26) and (3.27) assert that

NH(O)=O.

Using (3.22), (3.26), (3.28) and (2.19), it is clear then that

[(0,110,0) =2ao - kEo< 0

(3.25)

(3.26)

(3.27)

(3.28)

and hence the proof is complete.
The.COIdinuitY of "X across a sboek of arbitrary amplitude is an extre.~1y important mult;

for.it ...... that (3;2C) is triviIUy satisfleld and (3.19lreduces to the f..... Haaveiot relation

H(E-, ,,-) .. 1("0, Jlo, 0, .-, ,,-) - to

I~ 0 - -\.-- iU\JlO, VO, ,. ,,, JC •

Since G~ 0, (2.18h further implies the existence of the inverse function

and thus we can define the Hllgoniot stress-strain cllroe:

(3.29)

(3.30)

(3.31)
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Clearly, from (3.13) the shock velocity U is related to the secant (Rayleigh line) connecting the
initial state (0,0) and the final state (E-, 0'-) on the Hugoniot curve. Nunziato and Herrmann[12]
have studied the general properties of the Hugoniot curve defined by (3.31) and have proved the
contents of

Theomn 3. Consider a ·shock wave propagating into unde/ormed material at rest which is
also stress-lree and suppose that (2.8), (2.18), and (2.19) hold. Then

(i) il E> 0 lor all E, the shock is compressive, i.e.

on the other Iuuul, il S < 0 lor all E, the shock is expansive, i.e.

(ii) tlte shock vflocity and tlte mtropy increase monotonically as the HUfOIIiot ,tras-strain
curve is tNomed outward lrom tlte origin (0,0); and

(iii) the shock "'ocity is supersonic with respect to the material aluuJd of tlte wave and
subsonic with respect to the material behind the wave, i.e.

Having established these results. we can now consider the growth and decay of shocks of
arbitrary amplitude E- •

4. THE GROWTH AND DECAY OF SHOCK WAVES

In this section we derive a differential equation which governs the amplitude of the shock
wave propapting in a uniformly distributed granular material. The derivation of this equation is
fairly standard (see for example. Chen and Ourtin [13] and so will only be outlined here.
Throuahout the analysis it will be assumed that the material' ahead of the waye is in its
reference configuration which corresponds to a state of zero strain. zero stress and constant
entropy.

Using (3.2) with 1= E and v and combining this with (3.8), the following relation for the
amplitude E- of the shock is obtained:

dE- dU 2 F G- (ulOX )-

2U-+E--= (u --)[Exl--[7Ixl---[J'xxl
dt dt Po Po Po

(4.1)

where we have used (2.18). At this point we note that, by (2.7) and the thermodynamic results
(2.13) and (2.15),

However, in view of Theorem 2, the volume fraction gradient J'x must be continuous across the
shock and thus it foHows that (u.x )- =0 for a wave entering undeformed material. In this case
(4.1) reduces to the form given by Chen and Ourtin (eqn (3.16) of (l3]) for a shock entering an
elastic nonconductor. The sybsequent amplitude relation is obtained from (4.1) by evaluating
dU/dt and [7Ixl.In particular, using (3.11), (3.2) with I = 71 and e, (3.15), (3.16) and Theorem 2, U
can be shown that

and

dU = U(l': -1)7' dE
dt p.E-(l- 27') dt •

(4.2)

(4.3)
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where
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(4.4)

Substitutina (4.2)-(4.4) into (....1) lives the ........ equaBoD

dc- U(l- 1')(2.,. - 1)
Cit"" - .,.(3" +1)-(3" -n['x), (4.S)t

As expeeted, the~..vial' is ........ ~ the straia anlli............ wave;
what is soawQIt surpriaiaf is that the amplitude does DOt depend explicitly OD the aranularity
and thus the behavior of the shock front is qualitatively the same as it would be in a
bom.o....oua elutic Of course, there is an in8uence on the amplitude due to the
.... , •••_. it fUllCtioas B IDd G. ~ U.

To ....... the powth and decay behavior of the wave, u 'by (45), WIIiOtC from
result (iii) of·n.on. 3 dial

(4.6)

~ u is • for IIIOIl that a- > 0 _ .~If.~"¥on
(3.3l) is valued. Then, by (4.2), (2.18) and (ii) of TIIeorem ·3, it follOw. that for
compressive shocks [12]

(4.7)

n..... .... Couitllt' ..~ Mock WGHp,..,.,.,iIIIo ..~..... ".,.,.,
"..,.". til NIt wlJlcli ;, ..110",...f,.. TItM, ;f a- >0 ... ·(2.19)·1IoIdI

(i)

(ii)

(iii)

d.
["xl>O~Cit<O,

d..-
[...d<O~Cit>O.

d.
['xl "" O~Cit "" O.

Figure I is a schematic of the situation described in Theorem 4. Note in particular that,

shOCk InInt
will graw

s'** front
is sIIIdY

s'** InInt
will decay

F.. I. Sbock wave proIIea f(X) in a 1lllif0l'lllly diatributed IfIIIlIIar material with t- > o. a- > 0 at a
speciIc time I. n.e wave is PfOIlIPdaI _ ............. rut IIId tile slope i-wediIteIy behind

tile shock jump is ('K~

tCbellllld 0 ....(13). eq1I (3.16).
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although the shock front propaptes as an elastic wave, we expect the influence of the porosity
to be felt behind the front in a manner shown qualitatively in Fig. 1. In a recent numerical
study, Nunziato and Yarrington[13] used the present theory to model porous materials to show
this type of two-wave structure and compared the results with experimental observations on
polyurethane foam [3]. Similar wave structures have also been observed in porous aluminum[4]
and in dry sand under certain conditions[S, 6].t These observations appear to be consistent with
the result that the discontinuity in the volume fraction, resultina from the pore coUapse initiated by
the shock wave, must be second-order. We can calculate this discontinuity from (3.9), usina (3.24),
(3.12) and (2.7),

This result further emphasizes the role of the intrinsic equilibrated body force g in the pore
conapse process associated with a propaptina compressive wave.

Finally, we wish to note that in the case of weak shock waves all the results obtaiDecl for
elastic DOn-conductors apply to the present theory. That is, for small amplitudes ,-, the shock
velocity U is given by

the entropy jump [,,1 is third-order in the amplitude '-,

and the shock amplitude ,-is constant. These results are consistent with the exact solution to
the impact problem obtained by Nunziato and Walsh[1S] in the context of the linearized theory of
granular materials.

AckIw.."..art-11Iis mearcb was supported by the U.S. Depanmnt of l!IIeqyaDd the U.S. NatioDII Scinc:e
Foundation.
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til is importulto note t1Iat tbe results liVeD here apply only to materiIls in whida t> 0 for III. of interest. However.
in lOIDe puular materills (tee Seaman and WlliblaDIS)). the curvatllre 01 the lire....... curve is DOt poaitive everywllere
and thus the sbocIt wave behavior in tbese IDIIIrials caD be much more c:oeplex.


